Calculations from Chemical Equations

Chapter 9

Stoichiometry

*Calculations involving chemical equations
*Chemical equations tell us exactly how much of one reactant will react (combine) with a second reactant and how much of the product we should expect.

$2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$

- 2 atom $\mathrm{Al}+6$ molecule HCl
- $\quad \rightarrow 2$ formula unit $\mathrm{AlCl}_{3}+3$ molecule H_{2}
- $2 \mathrm{~mol} \mathrm{Al}+6 \mathrm{~mol} \mathrm{HCl}$
- $\quad \rightarrow 2 \mathrm{~mol} \mathrm{AlCl}_{3}+3 \mathrm{~mol} \mathrm{H}_{2}$
- $2(26.98 \mathrm{~g}) \mathrm{Al}+6(36.46 \mathrm{~g}) \mathrm{HCl}$ $\rightarrow 2(133.3 \mathrm{~g}) \mathrm{AlCl}_{3}+3(2.016 \mathrm{~g}) \mathrm{H}$

$2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$

- How many molecules of HCl will react with 4 atoms of Al ?
- How many atoms of Al are required to make 1 molecule of AlCl_{3} ?
- How many moles of H_{2} are made from 3 mole of HCl ?
- If 4 moles of AlCl_{3} are produced, how much H_{2} is produced?
- How much HCl is required to react with 1 mole of Al?

$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

- How many moles of oxygen are required to react completely with $50.0 \mathrm{~g} \mathrm{CH}_{4}$?
- What mass of CH_{4}, in grams, is required to react with $96.0 \mathrm{~g} \mathrm{of}_{\mathrm{O}}^{2}$?
- Calculate the mass of CO_{2} that can be produced by burning 6.0 moles of CH_{4} in excess O_{2} ?
- What mass of CH_{4} produces 3.01×10^{23} water molecules when burned in excess oxygen?
- Smelling salts contain ammonium carbonate, which can decompose to form ammonia, which acts as a mild heart stimulant. Ammonium carbonate decomposes by the reaction
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
- How many g of NH_{3} will be formed from 0.500 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$?
- Calculate the number of moles of calcium chloride needed to react with excess silver nitrate to produce 6.60 g of silver chloride.
- 1st - write the equation (a double displacement reaction)
- 2nd -do stoichiometry

Reactions and Energy

- Reactions will often generate energy (heat) or produce (give off) energy. We can use stoichiometry to calculate energy consumption or production.
- Exothermic reaction -- A reaction that liberates heat.
- $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}+$ heat
- Endothermic reaction -- A reaction that absorbs heat.
- $\mathrm{CO}_{2}+$ heat $\rightarrow \mathrm{C}+\mathrm{O}_{2}$
- Consider the combustion of methane (used in our bunsen burners)
- $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+890 \mathrm{~kJ}$
- Calculate the amount of heat produced when 1.00 g of methane is burned in excess oxygen.
- Copper(I)sulfide reacts upon heating in oxygen gas to produce copper metal and sulfur dioxide. How many grams of copper can be obtained from 500.0 g of cuprous sulfide using this process?
- If 382.6 g of copper were obtained from the reaction above, what would be the percent yield?
- What mass of sulfur dioxide would be produced from 500.0 grams of cuprous sulfide?

Percent Yield

- \% Yield = (mass product/mass expected)*100(\%)
- What could cause the yield to be $<100 \%$?
- impurities in the sample
- incomplete reaction
- What could cause the yield to be > 100% ?
- unexpected reactions
- Impure product
- incorrect weighing etc.

Limiting reactant

- Chez Ronald is making Big Macs. The formula for a Big Mac is $\mathrm{B}_{3} \mathrm{M}_{2}$, and is made according to the following fast food formula.
- $\quad 2 \mathrm{M}+3 \mathrm{~B} \rightarrow \mathrm{~B}_{3} \mathrm{M}_{2}$
- If Chez Ronald buys 28 meats and 36 buns how many Big Macs $\left(\mathrm{B}_{3} \mathrm{M}_{2}\right)$ can he make?
- We only got 11 Big Macs - What is the percent yield?
- How much potassium chloride is produced from the reaction of 2.00 g potassium and 3.00 g chlorine gas? Which is the limiting reagent?
- We only recovered 3.66 g KCl . What is the percent yield?
- When solutions containing $4.28 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$ and $7.16 \mathrm{~g} \mathrm{BaCl}_{2}$ are mixed, what mass of BaSO_{4} is produced?

$\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$

- How many moles of $\mathrm{Mg}(\mathrm{OH})_{2}$ would be produced from the reaction of 0.10 mole of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$?
- How many moles of NH_{3} would be produced from the reaction of 500 g of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$?
- How many molecules of water would be required to react with 3.64 g of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$?
- What is the maximum number of grams of $\mathrm{Mg}(\mathrm{OH})_{2}$ that can be produced by the reaction of 10.0 g of $\mathrm{Mg}_{3} \mathrm{~N}_{2}$ and 14.4 g of $\mathrm{H}_{2} \mathrm{O}$?
- What is the percent yield if 9.4 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ are produced?

